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Outline

« Background radiation from rock:

— Radio-isotope concentrations;

— Gamma-rays and neutron fluxes;

— Suppression of background from rock by passive shielding.
 Muon-induced background:

— Muon flux and spectrum;

— Measurements of neutron yield and flux;

— Neutron event rate (EURECA);

« Summary.
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Radio-isotope concentrations
From V. Chazal et al. Astroparticle Physics, 9 (1998) 163.

Element U Th K

Rock (0.84 +£0.20) ppm | (2.45 4+ 0.20) ppm | (6.8 +0.8) x 10? ppm

Concrete | (1.9 4+0.2) ppm (1.44+0.2) ppm | (25+£0.4) x 10° ppm

From J. Kisiel et al. (see talk by D. Malczewski at BUS-2006)

226Ra: 12.3 + 1.4 Bg/kg (= 1.0 ppm of 238U),
228Ac: 4.8 + 0.9 Bg/kg (= 1.2 ppm of 22Th),
40K: 92 + 22 Bg/kg (= 3.0x103 ppm of natural K).

Rock and concrete composition in % (from V. Chazal et al.
Astroparticle Physics, 9 (1998) 163, also later measurements):

Element 'D|N'1|Mg|i'1]|€i|]3'|l{|Ea|Ti|hh1|Fe

| H | C |
Rock | 1 | 504 | 404 | 0.44 | 0.84 | 258 | 6.93 | 0.06 | 0.21 | 30.6 | 0.07 | 0.03 | 1.9
Conerete | 1.09 |TT |-1

0.68 | 0.01 | 0.78 | 0.48 | 2.60 | 0.07 | 0.02 | 36.78 | 0.00 | 0.01 | 0.52
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Neutron flux

MNeutron production in LSM rock Neutron spectrum in LSM cavern

— 0.6 . x10°
= -
b SOURCES E 0.4
8 —— (o,n) + Fission T.n — GEANT4
- Fission U238 -
> 04 = 0.3
2 =
O L i
5 | S 0.2
0.2 E
£ [
x 0.1+
, o | N
: ™ I
00 ' [ A DR B _

4 6 8
Energy [MeV]

ﬂD
N

Energy [MeV]

 R. Lemrani et al. NIMA, 560 (2006) 454.
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Neutron yield [ neutrons -MeV' 1. cm?]

Neutron flux from concrete
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V. Tomasello et al., in preparation.

Neutrons and gamma-rays from concrete (30 cm) dominate over
those from rock.
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Neutron flux measurements
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Measured neutron flux: (1.06 £ 0.10 (stat) £ 0.59 (syst)) x10-¢ n/cm?/s
above 1 MeV (from Chazal et al., re-analysed in S. Fiorucci et al.
Astroparticle Physics, 28 (2007) 143).

New thermal neutron detectors (3He): total neutron rate 150
counts/day, flux ~2x10-¢ n/cm?/s (thermal + fast) (talks by the
EDELWEISS-II Collaboration).
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External radiations: summary

Radio-isotope concentrations are typical for rock.

Neutron flux is relatively small because of:
— The absence of the isotopes with low threshold for (a,n) reactions;
— 1% of hydrogen (neutron moderation) and absorption.

Neutron and gamma-ray fluxes from concrete dominate over those
from rock. Making concrete radio-pure would help with reducing
background radiation from walls.
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Passive shielding
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« Spectra of neutrons from Th decay chain beyond shielding.
« Option 1: lead (~20 cm against gamma-rays) + polyethylene (50
cm) or water (60 cm) (against neutrons).
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Flux s’ cm?2 KeV"'

Attenuation in water
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Spectra of gamma-rays from U
decay chain in concrete.
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‘Submarine’ versus ‘pool’

. Study for EURECA.

 Too high
background from
the stainless steel
of the water tank in
the ‘submarine’
option -> will
require additional
inner shielding.

e ‘Pool’ is better.

« All detector
\| ~| il | | components have
| | . b= to be ultra-radio-
| / pure.

L | wa
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Muon-induced events

LSM is the deepest lab in Europe: a factor of 3x10¢ attenuation of
the muon flux relative to the surface.

Muon flux: 0.23 m-2 hour-' through a sphere with unit cross-
sectional area.

<E > = 302 GeV, <0> = 37.5°, <¢p> = 167°, <depth> = 4814 m w.e.
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Muon generator: MUSUN
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Zenith and azimuthal angular distribution of muons as generated by
MUSUN in comparison with the data from the Frejus proton decay
experiment.

MUSIC and MUSUN, V. Kudryavtsev, Comp. Phys. Comm. 180 (2009) 339;
Another muon generator: M. Horn, PhD Thesis, Univ. of Karlsruhe (2007).
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Muon-induced neutrons
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« Recent measurements:

— Boulby, target: lead, less neutrons observed (56%) compared to GEANT4
predictions (H. Araujo et al. Astroparticle Physics, 29 (2008) 471);

— KamLAND, target: CH,, agreement between measurements and
simulations (S. Abe et al. ArXiv:0907.0061v1 [hep-ex]);

— LSM, EDELWEISS-II, target: everything; preliminary: agreement between
measured rate of neutron + gamma events, and simulations at low
energies (V. Kozlov, K. Eitel, talks at IDM2008, TAUP2009).
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Muon- mduced neutrons
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« New measurements are in
progress by the EDELWEISS

Collaboration.

. Talks by V. Kozlov (IDM2008),
K. Eitel (TAUP2009).
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Spectra in EURECA: Ge + CaWO0O4
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Only 1.610.4 single
nuclear recoils per
year per tonne of
target above 10
keV.

Significant
suppression due to
anticoincidence
between different
crystals.

If water is
instrumented with
PMTs (active veto),
then <0.2 ev/year
with a threshold of
0.2 GeV for veto.
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Summary

Extensive measurements have been performed and rock
composition and radioactivity levels are well known.

Radio-isotope concentrations are typical to rocks.
Monitoring of gamma-ray and neutron fluxes is on the way.

Neutron and gamma-ray flux attenuation has been studied.
External backgrounds is not a huge problem for high-sensitivity
experiments and we know how to deal with them.

LSM is the deepest lab in Europe. Large attenuation of the muon
flux by rock above the lab ensures that the muon-induced
background can be kept to the minimum.

We can model the muon-induced background with an accuracy of
better than a factor of 2.

Additional suppression of the muon-induced event rate is
achieved by the anticoincidence between different detectors
(crystals) and active veto system (90% efficiency is sufficient).

Internal backgrounds are detector specific and are under study.
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