Background radiations at LSM

Vitaly A. Kudryavtsev

University of Sheffield The EURECA Collaboration

Outline

- Background radiation from rock:
 - Radio-isotope concentrations;
 - Gamma-rays and neutron fluxes;
 - Suppression of background from rock by passive shielding.

• Muon-induced background:

- Muon flux and spectrum;
- Measurements of neutron yield and flux;
- Neutron event rate (EURECA);
- Summary.

Radio-isotope concentrations

From V. Chazal et al. Astroparticle Physics, 9 (1998) 163.

Element	U	Th	К
Rock	$(0.84\pm0.20)~\rm ppm$	$(2.45\pm0.20)~\rm ppm$	$(6.8\pm0.8)\times10^3~\rm{ppm}$
Concrete	$(1.9\pm0.2)~\mathrm{ppm}$	$(1.4\pm0.2)~\rm ppm$	$(2.5\pm0.4)\times10^3~{\rm ppm}$

From J. Kisiel et al. (see talk by D. Malczewski at BUS-2006)

²²⁶Ra: 12.3 ± 1.4 Bq/kg (≈ 1.0 ppm of ²³⁸U),
²²⁸Ac: 4.8 ± 0.9 Bq/kg (≈ 1.2 ppm of ²³²Th),
⁴⁰K: 92 ± 22 Bq/kg (≈ 3.0×10³ ppm of natural K).

Rock and concrete composition in % (from V. Chazal et al. Astroparticle Physics, 9 (1998) 163, also later measurements):

Element	Η	С	0	Na	Mg	Al	Si	Р	Κ	Ca	Ti	Mn	Fe
Rock	1	5.94	49.4	0.44	0.84	2.58	6.93	0.06	0.21	30.6	0.07	0.03	1.9
Concrete	1.09	7.78	49.68	0.01	0.78	0.48	2.69	0.07	0.02	36.78	0.09	0.01	0.52

16/10/2009, LSM Extension Workshop

Neutron flux

• R. Lemrani et al. NIMA, 560 (2006) 454.

Neutron flux from concrete

- V. Tomasello et al., in preparation.
- Neutrons and gamma-rays from concrete (30 cm) dominate over those from rock.

16/10/2009, LSM Extension Workshop

Neutron flux measurements

- Measured neutron flux: (1.06 ± 0.10 (stat) ± 0.59 (syst)) ×10⁻⁶ n/cm²/s above 1 MeV (from Chazal et al., re-analysed in S. Fiorucci et al. Astroparticle Physics, 28 (2007) 143).
- New thermal neutron detectors (³He): total neutron rate 150 counts/day, flux ~2×10⁻⁶ n/cm²/s (thermal + fast) (talks by the EDELWEISS-II Collaboration).

External radiations: summary

- Radio-isotope concentrations are typical for rock.
- Neutron flux is relatively small because of:
 - The absence of the isotopes with low threshold for (α ,n) reactions;
 - 1% of hydrogen (neutron moderation) and absorption.
- Neutron and gamma-ray fluxes from concrete dominate over those from rock. Making concrete radio-pure would help with reducing background radiation from walls.

Passive shielding

- Spectra of neutrons from Th decay chain beyond shielding.
- Option 1: lead (~20 cm against gamma-rays) + polyethylene (50 cm) or water (60 cm) (against neutrons).

Attenuation in water

Option 2: 3 m of water against neutrons and gamma-rays.

Spectra of gamma-rays from U decay chain in concrete.

'Submarine' versus 'pool'

- Study for EURECA.
- Too high background from the stainless steel of the water tank in the 'submarine' option -> will require additional inner shielding.
- 'Pool' is better.
 - All detector components have to be ultra-radiopure.

•

Muon-induced events

- LSM is the deepest lab in Europe: a factor of 3×10⁶ attenuation of the muon flux relative to the surface.
- Muon flux: 0.23 m⁻² hour⁻⁻¹ through a sphere with unit crosssectional area.
- $\langle E_{\mu} \rangle = 302 \text{ GeV}, \langle \theta \rangle = 37.5^{\circ}, \langle \phi \rangle = 167^{\circ}, \langle \text{depth} \rangle = 4814 \text{ m w.e.}$

Muon generator: MUSUN

- Zenith and azimuthal angular distribution of muons as generated by MUSUN in comparison with the data from the Frejus proton decay experiment.
- MUSIC and MUSUN, V. Kudryavtsev, Comp. Phys. Comm. 180 (2009) 339;
- Another muon generator: M. Horn, PhD Thesis, Univ. of Karlsruhe (2007).

16/10/2009, LSM Extension Workshop

Muon-induced neutrons

- Recent measurements:
 - Boulby, target: lead, less neutrons observed (56%) compared to GEANT4 predictions (H. Araujo et al. Astroparticle Physics, 29 (2008) 471);
 - KamLAND, target: CH₂, agreement between measurements and simulations (S. Abe et al. ArXiv:0907.0061v1 [hep-ex]);
 - LSM, EDELWEISS-II, target: everything; preliminary: agreement between measured rate of neutron + gamma events, and simulations at low energies (V. Kozlov, K. Eitel, talks at IDM2008, TAUP2009).

16/10/2009, LSM Extension Workshop

Muon-induced neutrons

- progress by the EDELWEISS **Collaboration.**
- Talks by V. Kozlov (IDM2008), K. Eitel (TAUP2009).

Spectra in EURECA: Ge + CaWO4

- Only 1.6±0.4 single nuclear recoils per year per tonne of target above 10 keV.
- Significant suppression due to anticoincidence between different crystals.
- If water is
 instrumented with
 PMTs (active veto),
 then <0.2 ev/year
 with a threshold of
 0.2 GeV for veto.

16/10/2009, LSM Extension Workshop

Summary

- Extensive measurements have been performed and rock composition and radioactivity levels are well known.
- Radio-isotope concentrations are typical to rocks.
- Monitoring of gamma-ray and neutron fluxes is on the way.
- Neutron and gamma-ray flux attenuation has been studied. External backgrounds is not a huge problem for high-sensitivity experiments and we know how to deal with them.
- LSM is the deepest lab in Europe. Large attenuation of the muon flux by rock above the lab ensures that the muon-induced background can be kept to the minimum.
- We can model the muon-induced background with an accuracy of better than a factor of 2.
- Additional suppression of the muon-induced event rate is achieved by the anticoincidence between different detectors (crystals) and active veto system (90% efficiency is sufficient).
- Internal backgrounds are detector specific and are under study.