Neutrinoless double electron capture experiment at LSM

University of Muenster, Germany (*Dieter Frekers* et al.)

Technical University of Dresden, Germany (*Kai Zuber* et al.)

Czech Technical Universiity, Prague, Czech Republic (*Ivan Štekl* et al.)

Joint Institute of Nuclear Research, Dubna, Russia (Fedor Šimkovic et al.)

> University of Bratislava, Slovakia (*Pavel P. Povinec* et al.)

Modes of the 0vECEC-decay: $e_{h} + e_{h} + (A,Z) \rightarrow (A,Z-2) +$ γ + 2γ **+ e**⁺**e**⁻ + M

Neutrinoless double electron capture

Theoretically, not well understood yet: • which mechanism is important? • which transition is important?

D.Frekers, hep-ex/0506002

е

е

1s

Oscillations of stable atoms (\Gamma=0)

$$| < f|e^{-iH_{eff}t}|i > |^{2} = \frac{4V^{2}}{(M_{i} - M_{f})^{2}} \sin^{2}[t (M_{i} - M_{f})/2]$$

$$[t (M_{i} - M_{f})] \leq 1 \qquad | < f|e^{-iH_{eff}t}|i > |^{2} = V^{2}t^{2}$$

$$[t (M_{i} - M_{f})] \geq 1 \qquad | < f|e^{-iH_{eff}t}|i > |^{2} \approx \frac{V^{2}}{(M_{i} - M_{f})^{2}}$$

$$[d_{68}Er \rightarrow \frac{164}{66}Dy \qquad | < f|e^{-iH_{eff}t}|i > |^{2} \approx \frac{V^{2}}{(M_{i} - M_{f})^{2}}$$

$$(M_{i} - M_{f}) = 24.1 \ keV \qquad | < f|e^{-iH_{eff}t}|i > |^{2} \leq 3 \ 10^{-55}$$

$$Double \ electron \ capture \ (\Gamma \neq 0)$$

$$(resonant \ enhancement \ of \ atom)$$

$$\Gamma = 4 \times 10^{-7} \ Z^{4} \ eV \qquad R_{max} = \frac{1 \ ton}{M_{i}} \times \frac{4V^{2}}{\Gamma} \qquad Mass \ difference >> \Gamma$$

$$\sim 10^{4} \ yr^{-1}$$

$$\Gamma_{1} = \frac{4V^{2}}{4(M_{i} - M_{f}) + \Gamma^{2}} \ \Gamma \qquad R \sim R_{max} \frac{\Gamma^{2}}{(M_{i} - M_{f})^{2}} \sim 10^{-3} \ yr^{-1}$$

$$Mass \ difference \sim keV$$

Double electron capture of ¹¹²Sn (perspectives of search)

F. Šimkovic, M. Krivoruchenko, A. Faessler, to be submitted

 $T_{1/2}^{0v}$ (⁷⁶Ge)= (2.95 – 5.74) 10²⁶ years for $m_{\beta\beta}$ = 50 meV

$J^{\pi}=0^+$ Calculated double electron capture half-lives ($m_{\beta\beta} = 1 \text{ eV}$)

Transition	$M_{A,Z-2}^* - M_{A,Z-2}$	$M_{A,Z-2}^{**} - M_{A,Z}$	Holes	$T_{1/2}^{\min}$	$T_{1/2}$
112_{50} Sn $\rightarrow 112_{48}$ Cd*	1871 ± 0.2	$-5.9 \pm 4.2 \pm 2.7$	$1s_{1/2} \ 1s_{1/2}$	2×10^{24}	8×10^{30}
$^{152}_{64}\text{Gd} \rightarrow ^{152}_{62}\text{Sm}$	0	$-0.3 \pm 2.5 \pm 2.5$	$1s_{1/2} \ 2s_{1/2}$	5×10^{24}	9×10^{29}
	0	$5.9\pm2.5\pm2.5$	$1s_{1/2} \ 3s_{1/2}$	4×10^{25}	8×10^{29}
	0	$7.4\pm2.5\pm2.5$	$1s_{1/2} \ 4s_{1/2}$	8×10^{26}	10^{33}
$^{148}_{64}\text{Gd} \rightarrow ^{148}_{62}\text{Sm}^*$	3045 ± 2	$5.7 \pm 2.5 \pm 2.5$	$2s_{1/2} \ 2s_{1/2}$	8×10^{25}	3×10^{32}
	3045 ± 2	$11.8 \pm 2.5 \pm 2.5$	$2s_{1/2} \ 3s_{1/2}$	3×10^{26}	8×10^{33}
	3045 ± 2	$13.3 \pm 2.5 \pm 2.5$	$2s_{1/2} \ 4s_{1/2}$	4×10^{27}	2×10^{35}
	3045 ± 2	$6.6 \pm 2.5 \pm 2.5$	$2p_{1/2} \ 2p_{1/2}$	2×10^{29}	2×10^{36}
$^{156}_{66}\text{Dy} \rightarrow ^{156}_{64}\text{Gd}^*$	1988.5 ± 0.2	$7.0 \pm 6.6 \pm 2.5$	$2s_{1/2} \ 2s_{1/2}$	2×10^{27}	8×10^{31}
	1988.5 ± 0.2	$7.9 \pm 6.6 \pm 2.5$	$2p_{1/2} \ 2p_{1/2}$	8×10^{29}	4×10^{35}

Transition	J^P	$M_{A,Z-2}^* - M_{A,Z-2}$	$M_{A,Z-2}^{**} - M_{A,Z}$	Holes	$\tilde{T}_{1/2}^{\min}$	$\tilde{T}_{1/2}$
$^{162}_{68}{\rm Er} \rightarrow ^{162}_{66}{\rm Dy}^*$	1+	1745.716 ± 0.007	$-10.1 \pm 3.5 \pm 2.5$	$1s_{1/2} \ 1s_{1/2}$	8×10^{23}	2×10^{29}
$^{156}_{66}\text{Dy} \rightarrow ^{156}_{64}\text{Gd}^*$	1+	1965.950 ± 0.004	$-12.5 \pm 6.6 \pm 2.5$	$1s_{1/2} \ 2s_{1/2}$	10^{25}	3×10^{30}
	1+	1965.950 ± 0.004	$-5.8 \pm 6.6 \pm 2.5$	$1s_{1/2} \ 3s_{1/2}$	2×10^{26}	2×10^{31}
	1-	1946.375 ± 0.006	$8.4 \pm 6.6 \pm 2.5$	$1s_{1/2} \ 2s_{1/2}$	8×10^{26}	4×10^{31}
$^{74}_{34}\text{Se} \rightarrow ^{74}_{32}\text{Ge}^*$	2^{+}	1204.204 ± 0.007	$3.0 \pm 1.7 \pm 1.6$	$2p_{1/2} \ 2p_{3/2}$	10^{36}	10^{45}

Lepton number and parity oscillations

$$\Gamma_1 = \frac{4V^2}{4(M_i - M_f) + \Gamma^2} \ \Gamma$$

Experimental activities (112Sn)

 $1_{1/2} > 9.2 \ 10^{-4}$ year

In comparison with the $0\nu\beta\beta$ -decay disfavoured due:

• process in the 3-rd (4th) order in electroweak theory

bound electron wave functions

favoured: resonant enhancement ?

A.S. Barabash et al., NPA 807 (2008) 269

Muenster and Bratislava groups (exp. in Bratislava) Frekers et al., in preparation

3 kg of Se (27 g of ⁷⁴Se)

FIG. 3: Coincidence γ -ray spectrum of ^{74}Se after 21.7 days of measuring time.

Monte Carlo simulation of interaction processes (CERN-GEANT 4)

- Muons delta electrons, bremsstrahlung, electron-positron pairs, muon capture
- Electrons, positrons, photons bremsstrahlung, annihilation, phoelectric effect, Compton scattering, pair formation
- Hadrons nuclear reaction, excitations (CERN-GEISHA and FLUKA)

Muons

Vertical flux

$$\left(\frac{dN}{dSdt}\right)_{v} = \int dp \int_{\Phi-\pi/2}^{\Phi+\pi/2} d\varphi \int_{0}^{\pi/2} d\vartheta j(p,\vartheta,\varphi) \sin^{2}\vartheta \cos(\Phi-\varphi)$$

Simulated muon pass through a HPGe detector

(muon momentum 50 GeV/c; energy deposited in the crystal was 1717keV)

Background gamma-spectrum

Detector :

200% relative efficiency

Shield - small, dia. 20 x 50 cm

- medium, dia. 60 x 70 cm
- large, dia. 100 x 120 cm

Shield thickness : 15 cm

Simulated background in different shields

AntiCompton spectrometer

Background gamma-spectra of coaxial (top) and well (bottom) detectors in the lead shield with anti-cosmic protection in the CAVE facility.

Possible neutrinoless electron capture experiment in LSM

- Segmented very low background HPGe detectors (≤ 10) in LN (4π geometry): 20cm dia x 20cm long, plus 2 stopcoks of 10cm dia x 10cm long
- Multiparameter digital electronics
- Passive shielding made of B+PE and electrolytic copper (muon veto?)
- ¹¹²Sn, ⁷⁴Se,... sources
- Expected half-life ~10²³ years (for 5 y running, 2012-16)
- Cost ~2 M€

Double electron capture $e_{1s1/2}$ + $e_{1s1/2}$ + 112 Sn \rightarrow 112 Cd(0^+_3)

Reletivistic electron w.f. (j=1/2, l=0, l'=1)

$$\Psi_{jm}^{(\alpha)}(\vec{x}) = \begin{pmatrix} f_{\alpha}(r) \ \Omega_{jlm} \\ (-1)^{\frac{1+l+l'}{2}} g_{\alpha}(r) \ \Omega_{jl'm} \end{pmatrix} \quad l = j \pm 1/2, \ l' = 2j - l$$

Potential

$$V^{1s_{1/2}1s_{1/2}}(0_{3}^{+}) = \frac{1}{4\pi} m_{e} \left(G_{\beta}^{2}m_{e}^{4}\right) \frac{m_{\beta\beta}}{m_{e}} \frac{1}{R m_{e}} \left(\frac{\left(\bar{f}_{1s_{1/2}}\right)^{2}}{4\pi m_{e}^{3}}g_{A}^{2} M^{0\nu}(0_{3}^{+})\right).$$
Matrix element

Width

$$\Gamma^{ECEC} = \frac{\left| V^{1s_{1/2}1s_{1/2}}(0_3^+) \right|^2}{(M_i - M_f)^2 + \frac{\Gamma_X^2}{4}} \Gamma_X$$

Exc. state E_{ex} (MeV)	M ⁰ v
0 ⁺ g.s. 0	2.69
$0^{+}_{1}(1 \text{ ph.})$ 1.224	3.02
$0^{+}_{2}(2 \text{ ph.})$ 1.433	0.90
$0^{+}_{3}(1 \text{ ph.})$ 1.224	2.78