Results of the NEMO-3 experiment (Summer 2009)

Outline

- > The $\beta\beta0\nu$ decay
- > The NEMO-3 experiment
- Measurement of the backgrounds
- > $\beta\beta2\nu$ and $\beta\beta0\nu$ results

Xavier Sarazin On behalf of the NEMO-3 Collaboration

2nd LSM-Extension Workshop - October 16 2009 - Modane, France

If $\beta\beta0\nu$ decay is observed \Rightarrow the neutrino is a Majorana particle $\nu=\overline{\nu}$

The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

<u>Tracking detector:</u> drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron)

The NEMO-3 detector Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

<u>Tracking detector</u>: drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron)

Radon-free air around the detector

- Phase I (Feb 2003 oct. 2004): High Radon
- Phase II (Dec 2004 today): Low Radon (Radon cont. reduced by factor 6)

ββ decay isotopes in NEMO-3 detector

centrifugation in Russia)

$\beta\beta$ event in NEMO3

Typical $\beta\beta 2\nu$ event observed from ¹⁰⁰Mo

Trigger: 1 PM > 150 keV

3 Geiger hits (2 neighbour layers + 1)

Trigger Rate ~ 5.5 Hz

 $\beta\beta$ evts: 1 event every 2 minutes

BB events selection

- PM-track association
- Common vertex
- 2 tracks with charge < 0 Internal hypothesis $\Delta t \sim 0$ ns
- 2 PM, each E> 200 keV No isolated PM (γ rejection)
 - No delayed track (²¹⁴Bi rejection)

Measurement of the different components of background in NEMO-3

Recent publication in NIM A606 (2009) 449-465)

NEMO-3 Backgrounds for \beta\beta

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Main bkg for $\beta\beta2\nu$ but negligeable for $\beta\beta0\nu$

 $(^{100}Mo~and~^{82}Se~Q_{BB}{\sim}~3~MeV~>~E\gamma(^{208}Tl)\sim2.6~MeV$)

e-

➤ ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination

inside the $\beta\beta$ source foil

> Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Measurement of the external γ **background**

Measurement of the external γ **background**

External γ -ray flux model: the simulations fit very well the NEMO-3 data both in (e⁻, γ) and crossing e⁻ channels

Measurement of the Radon inside the tracking detector

Monitoring of the Radon bkg every day > phase 2 Year 2004 M Antonia A A(Rn), mBq/m³ Year 2005

- ➢ Phase 1: Feb. 2003 → Sept. 2004 Radon Contamination
- ➢ Phase 2: Dec. 2004 → Today
 A (Radon) ≈ 5 mBq/m³

Measurement of the ²⁰⁸Tl (²³²Th) inside the $\beta\beta$ source foil

ββ material	Ν	A (mBq/kg)	A _{HPGe} (mBq/kg)
¹⁰⁰ Mo(m)	666	0.11±0.01	< 0.13; < 0.1; < 0.12*
¹⁰⁰ Mo(c)	1628	0.12 ± 0.01	< 0.17
⁸² Se(I)	446	0.34 ± 0.05	< 0.670
⁸² Se(II)	507	0.44 ± 0.04	$0.4 \pm 0.13^{**}$
⁴⁸ Ca	42	1.15 ± 0.22	<2.
⁹⁶ Zr	158	2.77 ± 0.25	<10.;<5.*
¹⁵⁰ Nd	1002	9.32 ± 0.32	$10. \pm 1.7$
¹³⁰ Te	448	0.23 ± 0.05	< 0.5
^{nat} Te	495	0.27 ± 0.04	< 0.08
¹¹⁶ Cd	196	0.17 ± 0.05	$< 0.83; < 0.5^{*}$
Cu	66	0.03 ± 0.01	< 0.033

²⁰⁸Tl contamination inside the $\beta\beta$ source foils is measured using **internal** (e⁻, γ , γ) or (e⁻, γ , γ , γ) channels

Agreement with HPGe measurements

^{208}Tl contamination in the Mo foils: $A(^{208}\text{Tl}) \sim 100 \ \mu Bq/kg$

 \Rightarrow ¹⁰⁰Mo foils should be measured later inside the BiPo detector

ββ2v and ββ0v results (summer 2009)

$\beta\beta2\nu$ result with ¹⁰⁰Mo

Phase I (high Radon): Feb 2003 – Dec 2004 (389 days)

Phys.Rev.Lett. 95, 182302 (2005)

$\beta\beta2\nu$ results with the other isotopes

ββ0ν results with ¹⁰⁰Mo

 $T_{obs} = 3.85$ years M(¹⁰⁰Mo) = 6.914 kg

Both simple counting and likelihood methods are consistent $T_{1/2} (0v\beta\beta) > 1.1 \times 10^{24} \text{ y} @ 90\% \text{ C.L.}$ $< m_v > < 0.45 - 0.93 \text{ eV}$ ββ0ν results with ⁸²Se

T_{obs} = 3.85 years M(⁸²Se) = 932 g

Data until the end of 2008

 $T_{1/2} (0v\beta\beta) > 3.6 \times 10^{23} \text{ y} @ 90\% \text{ C.L.}$ $< m_v > < 0.89 - 1.61 \text{ eV}$

Summary

> NEMO-3 running until end 2010

The backgrounds have been measured from the experimental data using different topologies of event (*NIM A606 (2009) 449-465*)

> $T_{\frac{1}{2}}(\beta\beta 2\nu)$ measured for 7 isotopes: ⁴⁸Ca, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd

> Activities of Radon (²¹⁴Bi) and ²⁰⁸Tl, the two most troublesome sources of bkg for $\beta\beta0\nu$ decay, have been measured with adequate precision.

Bkg for ¹⁰⁰Mo (Phase 2) in the $\beta\beta0\nu$ energy window [2.8 – 3.2] MeV

 $\Rightarrow bkg \sim 0.5 cts/kg/year \begin{cases} \beta\beta2\nu \sim 50\% \\ Radon (\sim 5 mBq/m^3) \sim 30\% \\ {}^{208}T1 (\sim 100\mu Bq/kq) \sim 20\% \end{cases}$

➢ Preliminary results for ββ0ν with ¹⁰⁰Mo and ⁸²Se
¹⁰⁰Mo T_{1/2}(ββ0ν) > 1.1 10²⁴ years (90% C.L.) ⇒ <m_ν> < 0.45 – 0.93 eV</p>
⁸²Se T_{1/2}(ββ0ν) > 3.6 10²³ years (90% C.L.) ⇒ <m_ν> < 0.89 – 1.61 eV</p>

BACKUP

Summary of the different background components for ¹⁰⁰Mo in the $\beta\beta0\nu$ energy window [2.8 – 3.2] MeV

		# cts/kg/year [2.8 – 3.2] MeV	Fraction
ββ2ν	$T_{1/2} = 7.10^{20} y$	0.25	50%
Radon (Phase 2)	5 mBq/m ³		30%
– on the wires		0.1	
– on surface of the foil		0.05	
²⁰⁸ Tl in the foil	~ 100 µBq/kg	0.1	20%
TOTAL		0.5	100%

 $Bkg \sim 0.5 \ cts/kg/year$ in the \$\beta \beta 0\cdot energy window [2.8 - 3.2] MeV

Test of the background measurement with the Cu foils

1 sector is equiped with very pure Copper foils

$0\nu\beta\beta$ of ¹⁰⁰Mo

Excluded at 90% C.L. 8.3 events

Efficiency $\varepsilon = 0.0786$

Excluded at 90% C.L. 6.1 events Efficiency $\varepsilon = 0.0706$

$0\nu\beta\beta$ of ⁸²Se

[2.6 , 3.2] MeV: Data: 6 events, Expected: 5.8 events Excluded at 90% C.L. 5.6 events Efficiency ε = 0.159

[2.6 , 3.2] MeV: Data: 9 events, Expected: 7.4 events Excluded at 90% C.L. 7.4 events Efficiency ε = 0.148

Summary of the $\beta\beta0\nu$ results obtained with NEMO-3

- No evidence for non conservation of the lepton number
- **Ο** Current limits on $0v\beta\beta$ (at 90% C.L.):

Isotope	Exposure (kg·y)	T _{1/2} (0vββ) [years]	⟨m _v ⟩ [eV]	NME reference
¹⁰⁰ Mo	26.6	> 1.1 · 10 ²⁴	< 0.45 - 0.93	1-3
⁸² Se	3.6	> 3.6 · 10 ²³	< 0.9 – 1.6	1-3
			< 2.3	7
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.5 – 2.5	4,5
			< 4.0 - 6.8	6
¹³⁰ Te	1.4	> 9.8 · 10 ²²	< 1.6 – 3.1	2,3
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 – 19.5	2,3
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6	7

Nuclear Matrix Elements references:

- [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)
- [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315
- [3] F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503
- [4] V.A. Rodin et al. Nucl.Phys. A 793 (2007) 213
- [5] V.A. Rodin et al. Nucl.Phys. A 766(2006) 107
- [6] J.H.Hirsh et al. Nucl.Phys. A 582(1995) 124
- [7] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503