2nd LSM extension workshop - 16th Oct 2009

UNDERGROUND STUDIES AND R&D TOWARDS MEGATONNE DETECTORS AT LSM

Michela Marafini - APC, Paris

SUMMARY

- Fundamental questions
- European position
 - LAGUNA sites
 - DETECTORS under study
- MEMPHYS
 - Detector geometry
 - Physic channels
 - Simulation and bkg studies
 - R&D
- Memphyno
 - Idea
 - Design
 - Actual Status

Michela Marafini

Memphyno

...WHY? HOW?...

2 The Big Bang origin of the Universe requires matter and antimatter to be equally abundant at the very hot beginning.

The Great Annihilation

1 particle out of 10 billion pairs of particles and anti-particles left over...

$$\eta = \frac{n_b - n_{\bar{b}}}{n_\gamma} \sim 10^{-10}$$

Baryogengesis

proton decay to be proofen

Lepto-Baryongenesis

Measured CP baryonic violation is not enough => need a knew type: Lepton CP violation

Interaction conservation of B+L

2nd LSM extension workshop - 16th Oct 2009

MAY BE ANSWERS..

Particle Physics

Proton decay CP-violation in neutrinos (combination atmospheric, reactors and beam neutrinos)

Neutrino Astronomy

Supernova neutrinos, diffuse SN neutrinos, solar neutrinos, geo-neutrinos, dark matter annihilation..

Supernova 1987A 23 February 1987 Geo-neutrinos for

Earth studies

The ApPEC Steering Committee has mandated the Peer Review Committee to write a Roadmap. ApPEC roadmap recommendation: **large neutrino detectors.**

This design study should take into account worldwide efforts and converge, on a time scale of 2010, to a common proposal.

EUROPEAN POSITION

Water Čerenkov Liq.Arg.

Michela Marafini

• LAGUNA

Design of a pan-European Infrastructure for Large Apparatus studying Grand Unification and Neutrino Astrophysics.

Ocear

• EUROnu

A High Intensity Neutrino Oscillation Facility in Europe Study: Physics performance of detectors to measure neutrino oscillation parameters with SuperBeam and BetaBeam and Neutrino factory, including detailed response and backgrounds.

Antarctica

HyperKamiokande Liq.Arg.

... In a

Large Apparatus for Grand Unification and Neutrino Astrophysics

Proton Decay:

Elimit up to 10³⁵ y

Neutrino Physics:

- supernovae neutrinos
 (explosion and relic)
 atmospheric neutrinos
 solar neutrinos
 accelerator neutrinos
 (Superbeam,BetaBeam,NeutrinoFactory)
- geo-neutrinos

http://laguna.ethz.ch

MEMPHYS:Water Cerenkov GLACIER: Liquid Argon

2nd LSM extension workshop - 16th Oct 2009

= > 7 canditate sites:

- Ø Boulbu
- Fréjus
- Caso
- SC
- Ø Pyhäsalmi
- Sunlab
- IFIN-HH

Large Apparatus for Grand Unification and Neutrino Astrophysics

Proton Decay: Solution limit up to 0.4 10^{35} y: $p \rightarrow \bar{\nu} + K^+$

Neutrino Physics:

- supernovae: ~ 9,3,7 10³ CC, NC, ES
- DSNB: (S/B) 9-110/7 (per 5 y)
 solar: ⁸B (ES:10⁴, CC:360), ⁷Be:10⁶, pep:7.7 10⁴
- geo-neutrinos: ~1000 ev. (per y)

DETECTOR LAYOUT

Cavern

height: 115 m, diameter: 50 m shielding from cosmic rays: ~4,000 m.w

Muon Veto-

plastic scintillator panels (on top) Water Cherenkov Detector 1,500 phototubes 100 kt of water reduction of fast neutron background

Steel Cylinder

height: 100 m, diameter: 30 m 70 kt of organic liquid 13,500 phototubes

Buffer —

thickness: 2 m non-scintillating organic liquid shielding external radioactivity

Nylon Vessel parting buffer liquid from liquid scintillator

Target Volume height: 100 m, diameter: 26 m 50 kt of liquid scintillator

50 kt of liquid scintillator

2nd LSM extension workshop - 16th Oct 2009

6

LENA

Large Apparatus for Grand Unification and Neutrino Astrophysics

Proton Decay: \odot limit up to 0.4 10³⁵ y: $p \rightarrow \bar{\nu} + K^+$

Neutrino from beams:

DETECTOR LAYOUT

6

LEN

Cavern

height: 115 m, diameter: 50 m shielding from cosmic rays: ~4,000 m.w

Muon Veto-

plastic scintillator panels (on top) Water Cherenkov Detector 1,500 phototubes 100 kt of water

GLACIER

Large Apparatus for Grand Unification and Neutrino Astrophysics

Proton Decay: Solimit up to 1.1 10³⁵ y: $p \rightarrow \bar{\nu} + K^+$ Solimit up to 0.5 10³⁵ y: $p \rightarrow e^+ + \pi^0$

Neutrino Physics:

supernovae: ~2.5,3 10⁴, CC, NC, 10³ ES
 DSNB: (S/B) 40-60/30 (per 5 y)
 solar neutrinos: ⁸B: 4.5 10⁴ (ES)
 atmospheric: 10⁴ ev. (per y)

MEMPHYS

MEgaton Mass PHYSics

- Water Čerenkov ("cheap and stable")
- Fiducial mass: 440 kt
- Baseline:
 - -- 3 (or 5) cylindric modules 60 x 65 m;
- -- Size limited by the attenuation length (λ ~80m) and the pressure on the PMTs;
 - -- Readout: 12"-10" PMTs, 30% geom. coverage

http://www.apc.univ-paris7.fr/APC_CS/Experiences/MEMPHYS/ arXiv: hep-ex/0607026

Underground site. Studied in an European program: cavity, rock, infrastructure for the cavern choice.

Detailed study for possible installation in extension of LSM at Fréjus site on going: - 130 Km from CERN, ~ 4800 m.w.e.

- Tank studies are carried out in Laguna;

2nd LSM extension workshop - 16th Oct 2009

Michela Marafini

MEMPHYS

SUPER-BEAMS BETA-BEAMS

The main goals: search of a non-zero θ_{15} angle or its measurement; searching for possible leptonic *CP violation*; determining the mass hierarchy and the θ_{25} octant.

Librations A Moderning

2nd LSM extension workshop - 16th Oct 2009

Michela Marafini

Michela Marafini

MEMPHYNO

Muon Hodoscope

Position x-y of the incoming muon"Four-fold Coincidence" for a trigger

Scintillator plans for the **µ** Hodoscope:

2nd LSM extension workshop - 16th Oct 2009

Test with cosmic muons(**Čerenkov light**). The Hodoscope is the trigger of the signals in the PMTs.

PMTs used to test the matrix acquisition and electronic

Position x-y of the incoming muon
 "Four-fold Coincidence" for a trigger

The PMm2 electronic will be tested with real Čerenkov light signals.

Track reconstruction performances;

Test one (then more together) electronic board and the all signal transmission.

Start with 4 PMT 8": Borexino to test our DAQ and Hodoscope-PMTs system.

Michela Marafini

Test with cosmic muons(Čerenkov light).

Common effort with PMm2 to make a easy "plugging and play" structure for the electronic and mechanic systems

- 17 Liberbin Benerik
- Position x-y of the incoming muon
- "Four-fold Coincidence" for a trigger

PMTs

Memphyno Read-out schema

...Soon we will start the acquisition ..

2nd LSM extension workshop - 16th Oct 2009

MEMPHYNO

FUTURE

Tunnel Routier du Fréjus Freius Tunnel

Memphyne

Measure at Fréjus

The currently available space. (3x3x3m³) has determined the size of Memphyno's tank: 2x2x2m³.

The LSM is planning to build a new international facility with two cavities 20 x 15 x 100 m³ and 20 x 15 x 50 m³ plus smaller dependencies with a total available volume of 60 000 m³.

Hall A

Galerie de sécurité Safety Tunnel

By pass d'accès a

LSMe

The support can be completely dissembled ("Ikea style")!

The grey IPNs can take out (used just for weight raisons)

Michela Marafini

MEMPHYNO

CONCLUSIONS

• Europe is active towards a megaton scale water

Čerenkov detector: MEMPHYS

- Envisaged installation at LSM
- Physic goals:
 - · > proton decay
 - ⊱ supernovae core-collapse and diffuse supernova neutrinos
 - Precision measurement of neutrino oscillation parameters on beams: 130 km from CERN, SuperBeam or/and Beta-Beam
- Participation to european projects: Laguna, Euronu, DevDet, ...
- Simulation and bkg studies ongoing
- R&D ongoing..
- Memphyno (Small size prototype)
 - Building@APC right now
 - Starting the acquisition soon
 - Future project:
 - beam test (electron)
 - underground test (bkg)

Michela Marafini

Memphync

Michela Marafini

WATER ČERENKOV R&D IN EUROPE

NNN09 - East Park Colorado

Michela Marafini

MEMPHYS

MEMPHYS

DIFFUSE SUPERNOVA NEUTRINOS

Fogli et al. JCAP 0504:002,2005

MEMPHYS could see the SRN in few years!

Direct measurement of Yuksel et al., emission parameters possible. Started **studies for sensitivity** for a 440ktons Water Čerenkov detector (bkg and dead-time) as a function of **latitude and depth** of the underground site in different European locations.

* PRL93, 2004 Michela Marafini

WATER ČERENKOV R&D IN EUROPE

NNN09 - East Park Colorado

MEMPHYS

JPER-BEAMS BETA-BEAMS

A Laboration de Molante

The main goals: search of a non-zero θ_{15} angle or its measurement; searching for possible leptonic CP violation; determining the mass hierarchy and the θ_{25} octant.

130 Km CERN-LSM

WATER ČERENKOV R&D IN EUROPE

NNN09 - East Park Colorado

MEMPHYS

MEgaton Mass PHYSics

BACKGROUND Studies

The Atmospheric neutrino flux depends from the latitude.

Latitude study for diffuse Supernova neutrino background

Site	Latitude (N)	s_{atm}
Kamioka, Japan	36.27°	1
<i>Pyhäsalmi</i> , Finland	63.66°	2.0
<i>Fréjus</i> , France	43.43°	1.5

Dependence of the total atmospheric neutrino flux below 60 MeV on the detector location. The scaling factor s_{atm} compares the flux to the one at the Kamiloka site.

> less invisible muons; > less electronic anti-neutrinos;

Work in progress for muon interactions in the rock, multiples backgrounds, **depth** and **latitude** studies for **reactor** and **atm** neutrinos bkg and **matter effect in the earth**.

23 Oct 2009

MEMPHYS

MEgaton Mass PHYSics

BACKGROUND STUDIES

The probability of observe matter effect in the earth with explosion supernova neutrino depends on the latitude.

LOCATION	Latitude	Longitude	Sh.Prob. Earth
Pyhäsalmi, Finland	$63.66^{\circ}N$	26.04°	0.581
Fréjus, France	$43.43^{\circ}N$	6.73°	0.568
Boulby, England	$54.56^{\circ}N$	-0.083°	0.577
Kamioka, Japan	$36.27^{\circ}N$	137.3°	0.560
Canfranc, Spain	$42.7^{\circ}N$	-0.52°	0.568
South Pole	$90^{\circ}S$	0°	0.414

the best location is the norther; the effect is extremely light;

Comparison measurements are possible if we take in account a not-showed detector in South Pole and one showed in Europe (Prob ~ 0.5 - 0.4);

Work in progress for muon interactions in the rock, multiples backgrounds, **depth** and **latitude** studies for **reactor** and **atm** neutrinos bkg and **matter effect in the earth**.

23 Oct 2009