Ultra-low background gamma spectrometry

Pia Loaiza Laboratoire Souterrain de Modane

2nd LSM-Extension Workshop, Valfréjus, 16 October 2009

Sources of radioactive background

- External gamma radiation, neutrons
- Rn and its progenies
- Radioimpurities in shielding materials
- Radioimpurities in materials close to detectors
- Contaminants in detector itself

Need material screening

Pia Loaiza, 2nd LSM-Extension Workshop, Valfréjus, October 16th, 2009

Ge spectrometry

Best limits 226Ra, 228Th : 20 μ Bq/kg for measurement time 100 days and 125 kg of Cu

The choice depends on what we want to measure

For all types: To improve sensitivity \rightarrow BACKGROUND REDUCTION

Which sensitivities for the future experiments?

EURECA: • Present γ rejection factor ~ 10⁵

• According to simulations: ~10⁵ evts/year in 10 keV<E<50 keV in 1000 kg of Ge from Cu 226Ra, 228Th : 20 μ Bq/kg

SuperNEMO40 mBq/kg in 214Bi3 mBq/kg in 228Thneeded for PMTS

The necessary sensitivity levels are reached, but time-consuming measurements needed

→ need more detectors

further reduce background?

Experiment-specific radioctivity measurements Example: the BiPo detector for SuperNEMO

- Measurement of ²⁰⁸TI and ²¹⁴Bi concentration in foil-sources and other thin materials
- Goal : measurement of 10 m² of foil-sources (40 mg/cm2) in 1 month with sensibility :
 - Volume concentrations : $208TI < 2 \mu Bq/kg \& 214Bi < 10 \mu Bq/kg$
- Detection of the BiPo cascade : β + delayed α

Conclusions

Gamma-spectrometry: non destructive technique of measurement of low radioactivities

Sensibilities needed for future experiments are reached

Need probably a large number of detectors

AND detector-specific methods

Copper: FROM G. HEUSSER

Coppy		NOSV quality
97-99	% + 2000 ppm O ₂ +	99.9975% (1-4 ppm O ₂)
Ni: % IN ORE		< !-2 ppm
Co:	about 5 ppm	< 1 ppm
⁴⁰ K:	7.5 ± 1.0 mBq/kg	< 0.088 mBq/kg
²²⁶ Ra:	1.8 ± 0.4 mBq/kg	< 0.020 mBq/kg
²²⁸ Th:	< 0.44 mBq/kg	< 0.023 mBq/kg

Aluminium PHP:

⁴⁰ K	1.1 + 0.2 – 0.1 mBq/kg
²²⁶ Ra	0.27±0.19 mBq/kg
²²⁸ Ra	< 0.11 mBq/kg
²²⁸ Th	1.4 \pm 0.2 mBq/kg

Stainless steel:

(From G. Heusser):
1.8+/-6 mBq/kg
0.6+/-0.2 mBq/kg
0.2+/-0.1 mBq/kg
18+/-1 mBq/kg