A dedicated SuperNova neutrino detector system

I. Giomataris, 2nd LSM-EXTENSION WORKSHOP - OCTOBER 16th, 2009 - Modane, France

S. Aune¹, E. Bougamont¹, M. Chapellier¹, A. Dedes⁵, P. Colas¹, J. Derre¹, G; Fanourakis⁷,

E. Ferrer¹, W. Fulgione¹⁰, Th. Geralis⁷, G. Gerbier¹, M. Gros¹, I. Irastorza⁹, P. Kanti⁵, Y. Lemiere¹,

X.F. Navick¹, Th. Papaevangelou¹, P. Salin⁴, I. Savvidis³, N. Spooner⁶, S. Tzamarias⁸, J. D. Vergados⁵

- Principle of the detector and results
- Neutral current neutrino Supernova demonstrator
- Worldwide Network

Radial TPC with spherical proportional counter read-out

A Novel large-volume Spherical Detector with Proportional Amplification readout, I. Giomataris et al. Jul 2008. 12pp, e-Print: arXiv:0807.2802 [physics.ins-det]

- Simple and cheap
- single read-out
- Robustness
- Good energy resolution
- Low energy threshold
- Efficient fiducial cut

Early experimental results

S. Aune et al., AIP Conf.Proc.785:110-118,2005.

I. Giomataris et al., Nucl. Phys. Proc. Suppl. 150:208-213, 2006.

I. Giomataris and J. D. Vergados, AIP Conf. Proc. 847:140-146,2006

At high energy : Excellent energy resolution Measured Radon gas emission spectrum with spherical detector

Energy resolution under amplification: a world record !! I. Giomataris

Neutron energy and flux measurement ³He + n \implies ¹H + ³H (Q= 765 keV) Results at ground Saclay Ar-CH4(98-2)+80mg He3

In 2008

Detector installed in LSM laboratory

goal: measure thermal neutron background and estimate fast neutron flux with 10 gr ³He

1. Giomataris

Efficiency of cut 60%

Thermal neutrons 760 keV

600

800

1000

1200

1400

1600

1800

ampl-sphere

200

400

Thermal neutron flux 2.2x10⁻⁶/cm²/s Goal: measure fast neutrons

To measure fast neutrons we need -Low background detector -Higher He-3 mass

Run at low threshold with Saclay SPC

8 keV fluorescence peak in Cu ID 1D' Preliminary Entries Entries Mean 1766. 47.78 Mean RMS 947.5 RMS 28.33 Muons Ŋ Preliminary spectrum Efficiency vs E under study By G. Gerbier ղիեւ Ar @ 100mb, 1500 \ Low threshold spectrum Û 6Ω Amplitude 50 bin/keV 0.2 I. Giomataris **keV** G Gerbier Saclay keV

Low energy threshold application **Neutrino-nucleus coherent elastic scattering** $v + N \longrightarrow v + N$ $\sigma \approx N^2 E^2$, *D. Z. Freedman, Phys. Rev.D9(1389)1974* $T_N = 2 m_N (E_v \cos \theta)^2 / \{(m_N + E_v)^2 - (E_v \cos \theta)^2\}$

A. Druikier, L. Stodolsky, Phys.Rev.D30:2295,1984
JI Collar, Y Giomataris - NIMA471:254-259,2000
H. T. Wong, arXiv:0803.0033-2008
PS Barbeau, JI Collar, O Tench - Arxiv preprint nucl-ex/0701012, 2007

Nuclear reactor measurement with present prototype

At 10 m from the reactor, after 1 year run (2x10⁷s), assuming full detector efficiency:

- Xe ($\sigma \approx 2.16 \times 10^{-40} \text{ cm}^2$), 2.2x10⁶ neutrinos detected, T_{max}=146 eV
- Ar ($\sigma \approx 1.7 \times 10^{-41} \text{ cm}^2$), 9×10^4 neutrinos detected, $T_{\text{max}} = 480 \text{ eV}$
- Ne ($\sigma \approx 7.8 \times 10^{-42} \text{ cm}^2$), 1.87×10^4 neutrinos detected, $T_{\text{max}} = 960 \text{ eV}$

Challenge : Very low energy threshold < 100 eV is required We need to calculate and measure the quenching factor Application : Remote control of nuclear reactors Background must be kept as low as possible mataris

Supernova detector

Through neutrino-nucleus coherent elastic scattering Supernova neutrino detection with a 4 m spherical detector

Y. Giomataris, J. D. Vergados, Phys.Lett.B634:23-29,2006 For $E_v = 10 \text{ MeV } \sigma \approx N^2 E^2 \approx 2.5 \times 10^{-39} \text{ cm}^2$, $T_{max} = 1.500 \text{ keV}$ For $E_v = 25$ MeV $\sigma \approx 1.5 \times 10^{-38}$ cm², $T_{max} = 9$ keV Expected signal : about 100 events (Xenon at p=10 bar) per galactic explosion

Advantages of a Neutral Current Detector

- All neutrinos contribute
- The event rate is not affected by neutrino oscillations
- The target proton contribution is negligible, but all neutrons contribute
- The rate is proportional to N²

0.01

Supernova detection sensitivity

Idea : A world wide network of several (tenths or hundreds) of such dedicated Supernova detectors robust, low cost, simple (one channel) **To be managed by an international scientific consortium and operated by students**

The proposed Supernova demonstrator

- 4 m in diameter
- Vessel (seal) : radio pure Cu or stainless steel
- P= 10-50 bar
- Gas Xe (10 bar) or Ar (50 bar)

Milestones of R@D phase

- Establish stability and robustness of the system at high pressure and low energy threshold < 100 eV
- Improve background level at the sub-keV energy range (first studies with a smaller prototype under study)
- Define the conditions for long term operation Gas purification, gain stability, maintenance
- Design and build a low cost demonstrator

GOAL : Life Time of such system about 1 century

• Set up a European or worldwide collaboration

I. Giomataris

Pointing?

Neutral current detector has not pointing capability In the case of a large number of such detectors direction could be provided by triangulation

Synergy with other Supernova detectors?

(super-K, kamLAND, LVD, Borexino, Icarus, Baksan, Mini-BooNe)

(Hyper-K, MEMPHYS, DUSEL, LENA, CLEAN, NOvA, OMNIS, SNO+, HALO, MOON) Yes,

- Neutral current is sensitive to all neutrino flavors complementarity
- In coincidence, they would improve extra galactic sensitivity

Extragalactic sensitivity ?

To tackle Andromeda neutrino bursts (700 kpc) we need:

- a world wide network of several hundreds such detectors
- background level of a few counts/hour below 1 keV

Additional physics

• Dark matter search through very low energy threshold < 100 eV

A. Dedes et al., arXiv.org/pdf/0907.0758

Summary

- A new spherical detector is born and developed
- Good energy resolution, robust and stable
- A first prototype is operating in LSM
- A low cost Supernova demonstrator is proposed
- A world wide network of several detectors is advetized