

Edelweiss-II : status and first results

A new generation of background-free bolometers for WIMP search

From EDWI to EDW II New ID detectors Some current results Outlook G. Gerbier CEA Saclay, IRFU, France

Valfréjus, Ulisse workshop October 16th 2009

Direct search for WIMPs

- WIMPs forming our Galactic halo :
 - 10 1000 GeV mass
 - v ~ 200 km/s
- ⇒ 0-50 keV nuclear recoils
- (~ exponential spectrum)
- SUSY neutralino (σ prediction)
 <1 collision / kg / month

 Cryogenic 10mK phonon/ionisation detectors : Subkev resolution on both channels Low thresholds
 Excellent separation of populations
 background and signal identification

 Also sensitive to electronic recoils, to inelastic DM, light masses

Edelweiss I results /limits (2002-2005) « NTD »

CEA Saclay (IRFU and IRAMIS)

E. Armengaud, G. Gerbier, M. Gros, X-F. Navick, B. Paul, S. Hervé, Y Pénichot, (M. Chapellier), P.Pari Post-doc: A S Torrento Thesis : A. Chantelauze (cotutelle FZK), J Domange BDI

CNRS, CSNSM Orsay

L. Berge, A. Broniatowski, D. Carré, S. Collin, L. Dumoulin, F. Lalu, S. Marnieros Post-doc/ATER : E. Olivieri

CNRS IPN Lvon

C Augier, F. Charlieux, M. De Jésus, P. Di Stefano, J. Gascon, A. Juillard, V. Sanglard, L. Vagneron,

CNRS Néel Grenoble

A. Benoit, M. Caussignac, H. Rodenas

KIT, Karlsruhe

J. Blümer, K. Eitel, Post doc : V Koslov

JINR Dubna

E Yakushev S Semikh

Oxford University

H Kraus, S Henry, V Mikaillik

Detectors, electronics, acquisition, background, analysis

Detectors, cabling, cryogenics, analysis

Thesis : O. Crauste, J Domange

Electronics, background, analysis, detectors

Thesis : MA Verdier, S. Scorza **Cryogenics**, electronics

Muon Veto and neutron counter, background

Thesis : H. Kluck, A. Chantelauze (cotutelle CEA)

Monitoring of neutron and radon backgrounds

Thesis A Lubashevski L Perevozchikov

High impedance sensors, wiring Thesis : S Kierkby

New **Official member**

C Cerbier Ulisse wkshop 10/00

The Edelweiss-II experiment

operated /improved since 2006

- Operated at the Underground Laboratory of Modane, 4800 mwe (4µ/day/m²)
- Cryogenic installation (~ 20 mK) :
 - Reversed geometry cryostat
 - Use of pulse tubes, Gm reliqufier
- Can house up to 50 kg of detectors

Shieldings :

- Clean room + deradonized air
- Active muon veto (>98% coverage)
- **50 cm PE shield**, 20 cm Lead shield
- \Rightarrow γ background reduced by ~2 wrt EDW1

Facilities :

- Remotely controlled sources for calibrations + regenerations
- Detector storage & repair within clean room
- 12 cool-downs already operated

The muon veto in action

 Interactions in detectors due to muoninduced neutrons inside the shields

Geant4 - expected : ~0.03 evts / kg.d
> nuclear recoils below 50 keV
Measured bolometer - muon veto coincidence rate : ~ 0.04 evts/kg.d
The ionization yield distribution of coincidences is consistent with muoninduced events

 In addition: neutron detector installed to study μ induced n with higher stats

Surface event rejection: interleaved electrodes

- First detector built 2007
- 1x200g => extended beta calibration
- 3x400g tested in 2008 =>First set of data

2008 physics run with 2 400g IDs

- 86 live days / 4 months / 2x400g detectors
- 18.3 kg.d with < 15 keV threshold, ~50% eff at 10keV</p>

2009 : detectors in operation

5 x ID400: 411 g
 Built @ Orsay-CSNSM
 5 x ID0: 360 g
 Built by Canberra
 2 x Full ID: 411 g
 Built @ Orsay-CSNSM

Fiducial vol : 80 %

C D C D C

FID401

0 0

C D

C D

D

ID401

ID3

G Gerbier - Ulisse wksnop - 10/09

Exposure run 12

- Physics run started on march 28th
 - Total mass : 3.8 kg (+0.8 FID)
 - Fiducial mass : 1.55 kg (10 ID)
- Total time : 180 d
- Total live time : 140 d
- Physics time : 126 d
- All detectors work
- □ 4 channels dead /80
- □ Heat FHWM 0.75-2 keV
- Ionisation FHWM 1-2.5 keV mostly
- Main issue : stability

- Currently analysed data set : april-september = 6 months
 - Raw exposure : 470 kg.d
 - Fid exposure before quality cuts : 190 kg.d

Qplot for « surface » events of ID3

4 keV Eion threshold 76 ΙÐ ENTRIES 3109 14 124 days of data Ò.00 0,00 0.00 .<u>0</u>.00 0.153E+04 0.158E+04 Red region data 0.00 0.00 0.00 1.2 0.8 Expected 10 keV lines from ⁶⁸Ge 0.6 cosmogenics 0.4 0.2 Û 80 0 20 40 60 100 120 140 160 18d 200 Qplot data tid Expected beta from ²¹⁰Pb, from ²¹⁰Bi

Qplot for volume events

Under analysis

Quality cuts tuned : noisy (heat, ionisation) periods removal, : no detector with excess events wrt mean in control region (Q<0.5, E>Ethresh, not in ROI)

Paper by end of 2009

Green region data

Outlook for next 4 years

- 1) Increase sensitivity to WIMP search
 - fiducial mass x3 in spring, x6 end 2010
 - <10⁻⁸ pb by 2011 (1200 kg.d)
 - fiducial mass x20 end 2011 =>10 000 kg.d exposure
- 2) Optimisation of detectors
 - Go to 800 g detectors : higher fid mass, less channels /kg
 - Redondancy : double heat read out, fast ionisation channel, anticipate new backgrounds
 - Lower purity grade study : cost
 - Push beta region at higher Q (amorphous Ge layer) b rejection
- \Box EURECA : 10⁻¹⁰ pb goal = no background in 150 000 kg.d
 - Factor 5 away in beta : **ok**
 - Factor 50 in gamma :
 - better environment : copper from Norddeutsche Affinerie **ok**
 - better rejection measurement : in progress
- Detectors well fitted for EURECA and for mass production
 - Efficient, simple to build, robust
 - Industrial production (Ge producers, manufacturers) investigated